Трансформер (модель машинного обучения)

Трансфо́рмер (англ. Transformer) — архитектура глубоких нейронных сетей, представленная в 2017 году исследователями из Google Brain.[1]

По аналогии с рекуррентными нейронными сетями (РНС), Трансформеры предназначены для обработки последовательностей, таких как текст на естественном языке, и решения таких задач как машинный перевод и автоматическое реферирование. В отличие от РНС, Трансформеры не требуют обработки последовательностей по порядку. Для примера, если входные данные это текст, Трансформеру не требуется обрабатывать конец текста после обработки его начала. Благодаря этому Трансформеры распараллеливаются легче чем РНС и могут быть быстрее обучены.[1]

Трансформеры используются в Яндекс.Переводчике[2], Яндекс.Новостях[3], Google Переводчике[4], GPT-3.

Примечания

  1. 1,0 1,1 Ошибка Lua в Модуль:Sources на строке 1705: attempt to index field 'wikibase' (a nil value).
  2. Семен Козлов. Transformer — новая архитектура нейросетей для работы с последовательностями. Хабр (30 октября 2017). Дата обращения: 3 ноября 2020.
  3. Тимур Гаскаров. Как Яндекс научил искусственный интеллект находить ошибки в новостях. Хабр (12 декабря 2019). Дата обращения: 3 ноября 2020.
  4. Isaac Caswell, Bowen Liang. Recent Advances in Google Translate (англ.). Google AI Blog (8 июня 2020). Дата обращения: 3 ноября 2020.