Изменения
нет описания правки
Синтаксические N-граммы — это N-граммы, определяемые путями в деревьях синтаксических зависимостей или деревьях составляющих, а не линейной структурой текста<ref name="sng">Grigori Sidorov, Francisco Velasquez, Efstathios Stamatatos, Alexander Gelbukh, and Liliana Chanona-Hernández. Syntactic Dependency-based N-grams as Classification Features. LNAI 7630, pp. 1-11, 2012.</ref><ref>Grigori Sidorov. Syntactic Dependency Based N-grams in Rule Based Automatic English as Second Language Grammar Correction. International Journal of Computational Linguistics and Applications, Vol. 4, No. 2, pp. 169—188, 2013.</ref>. Например, предложение: «Экономические новости оказывают незначительное влияние на финансовые рынки» может быть преобразовано в синтаксические N-граммы, следуя древовидной структуре его [[Грамматика зависимостей|отношений зависимостей]]: новости-экономические, влияние-незначительное, влияние-на-рынки-финансовые и другие<ref name="sng"/>.
Синтаксические N-граммы — это N-граммы, определяемые путями в деревьях синтаксических зависимостей или деревьях составляющих, а не линейной структурой текста<ref name="sng">Grigori Sidorov, Francisco Velasquez, Efstathios Stamatatos, Alexander Gelbukh, and Liliana Chanona-Hernández. Syntactic Dependency-based N-grams as Classification Features. LNAI 7630, pp. 1-11, 2012.</ref><ref>Grigori Sidorov. Syntactic Dependency Based N-grams in Rule Based Automatic English as Second Language Grammar Correction. International Journal of Computational Linguistics and Applications, Vol. 4, No. 2, pp. 169—188, 2013.</ref>. Например, предложение: «Экономические новости оказывают незначительное влияние на финансовые рынки» может быть преобразовано в синтаксические N-граммы, следуя древовидной структуре его [[Грамматика зависимостей|отношений зависимостей]]: новости-экономические, влияние-незначительное, влияние-на-рынки-финансовые и другие<ref name="sng"/>.
Синтаксические N-граммы отражают синтаксическую структуру в отличие от линейных N-грамм и могут использоваться в тех же приложениях, что и линейные N-граммы, в том числе в качестве признаков в векторной модели. Применение синтаксических N-грамм дает лучшие результаты при решении определенных задач, чем использование стандартных N-грамм, например, для определения авторства<ref>Grigori Sidorov, Francisco Velasquez, Efstathios Stamatatos, Alexander Gelbukh, and Liliana Chanona-Hernández. Syntactic N-grams as Machine Learning Features for Natural Language Processing. Expert Systems with Applications, Vol. 41, No. 3, pp. 853—860, [http://www.sciencedirect.com/science/article/pii/S0957417413006271 DOI 10.1016/j.eswa.2013.08.015] {{Wayback|url=http://www.sciencedirect.com/science/article/pii/S0957417413006271 |date=20150924182238 }}.</ref>.
Синтаксические N-граммы представляют собой инструмент, позволяющий анализировать и описывать синтаксическую структуру языка. В отличие от линейных N-грамм, они могут быть использованы в тех же областях, что и последние, включая применение в качестве элементов векторной модели.
== См. также ==
== См. также ==