Изменения

м
Строка 161: Строка 161:  
Разумеется, данная операция не является настоящим умножением чисел, и выражается формулой:<ref>[http://www.research.att.com/~njas/sequences/a101330.txt Notes on the Fibonacci circle and arroba products]{{ref-en}}</ref>
 
Разумеется, данная операция не является настоящим умножением чисел, и выражается формулой:<ref>[http://www.research.att.com/~njas/sequences/a101330.txt Notes on the Fibonacci circle and arroba products]{{ref-en}}</ref>
 
: <math>a\circ b =  3 a b  -  a \lfloor(b+1)\varphi^{-2}\rfloor -  b \lfloor(a+1)\varphi^{-2}\rfloor,</math>  
 
: <math>a\circ b =  3 a b  -  a \lfloor(b+1)\varphi^{-2}\rfloor -  b \lfloor(a+1)\varphi^{-2}\rfloor,</math>  
где <math>\lfloor\ldots\rfloor</math> — [[целая часть]], <math>\varphi=\frac{1+\sqrt{5}}{2}</math> — [[золотое сечение]].
+
где <math>\lfloor\cdot\rfloor</math> — [[целая часть]], <math>\varphi=\frac{1+\sqrt{5}}{2}</math> — [[золотое сечение]].
   −
Эта операция обладает [[ассоциативность]]ю, на которую впервые обратил внимание [[Дональд Кнут]].<ref>{{cite journal |author=D. E. Knuth |title=Fibonacci multiplication |journal=Applied Mathematics Letters |volume=1 |issue=1 |year=1988 |pages=57-60 |doi=10.1016/0893-9659(88)90176-0}}</ref>
+
Эта операция обладает [[ассоциативность]]ю, на что впервые обратил внимание [[Дональд Кнут]].<ref>{{cite journal |author=D. E. Knuth |title=Fibonacci multiplication |journal=Applied Mathematics Letters |volume=1 |issue=1 |year=1988 |pages=57-60 |doi=10.1016/0893-9659(88)90176-0}}</ref>
 
Следует отметить, что другое «произведение» <math>\sum_{k,l} \varepsilon_k \zeta_l F_{k+l-2},</math> отличающееся лишь сдвигом на два разряда, уже не является ассоциативным.
 
Следует отметить, что другое «произведение» <math>\sum_{k,l} \varepsilon_k \zeta_l F_{k+l-2},</math> отличающееся лишь сдвигом на два разряда, уже не является ассоциативным.
  
Анонимный участник